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The effect of trapped field on stationary 
waves formed at the interface of a conduction fluid 

and a magnetic field 
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A two-dimensional, moving, incompressible and electrically conducting fluid 
having trapped magnetic field (i.e. field threading the fluid) is confined by a 
uniform vacuum magnetic field. The fluid-vacuum field interface is horizontal and 
assumed to be free from instabilities. Dissipation by viscosity and resistivity is 
neglected, hence, for steady motion, the trapped field may be regarded as frozen 
into the fluid, in the sense that both move together. A pressure disturbance is 
introduced into the system, and it is found that a harmonic stationary wave is 
formed upstream provided certain criteria hold. 

1. Introduction 
Essentially the problem under investigation is the magnetohydrodynamic 

analogue of the classical surface wave problem in hydrodynamics. Figure 1 
shows an infinitely conducting and incompressible fluid flowing down a channel of 

* H , Field 

~~~~ ~ 

FIGURE 1 .  A column of conducting fluid moving with velocity U, in the presence of trapped 
ficld Go and confined by a vacuum field H,. 

uniform depth yo. The fluid, which is assumed to  be inviscid, is threaded by a 
trapped magnetic field Go, and confined by a vacuum field H,. All electric current 
is coilfined to a very thin layer, which forms the vacuum field-conducting fluid 

i nterface. 
This initially uniform system can be disturbed in one of two ways. It is possible 

to affect the vacuum field by introducing into it either a current source or a 
magnetic dipole. Alternatively, a pressure force p*, due to a jet of gas having no 
interaction with the magnetic field, can be applied a t  some point on the interface. 
For mathematical convenience we choose to adopt the latter method, and it is 
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found that a stationary surface wave is formed upstream of the source of dis- 
turbance provided the following conditions hold : 

P+Pl ’ 1, 

P1 < 1, 
where P = (p,Hi)/(p,UE) is an Alfvdn number based on the vacuum field H,, 
PI = (plGi) / (poUi)  is an Alfven number based on the trapped field Go. po, Uo 
a,re the initial uniform values of density and velocity and ,uo, p1 are respectively 
the permeabilities of free space and the fluid. 

The physical significance of these conditions is discussed in detail in a later 
section; but simple inspection shows that in general the presence of trapped 
magnetic field plays an important role in determining whether a wave can 
propagate. For the particular case of no trapped field, P1 = 0, hence P > 1 
becomes a sufficient condition for an upstream wave. This is not an unexpected 
result, since this is precisely the condition necessary for an upstream wake to be 
formed when an infinitely conducting and incompressible fluid flows past an 
obstacle in the presence of an aligned magnetic field (Goldsworthy 1961). 

2. Method of solution 
The initial two-dimensional configuration is shown in figure 1. The base of the 

channel is taken to be the x axis, whilst the y axis is perpendicular through the 
line of applied pressurep”. The undisturbed fluid pressure is Po, hence the balance 
of fluid a.nd magnetic pressures across the interface at  y = yo yields; 

therefore 

which shows that the initial fluid pressure is determined according to the relative 
strengths of the trapped and vacuum magnetic fields. 

On application of a pressure disturbance p*, the interface assumes the shape 
y = y , + ~ ( x )  whilst the vacuum field becomes H = H,+h, the trapped field 
G = Go+& the fluid velocity U = Uo+ q and the fluid pressure P‘ = Po+pp, 
where it is assumed that the quantities ~(x), p F ,  q = (u ,v) ,  h = (h,,hv), 
g = (g,, gv) are perturbations whose squares and products can be neglected. 
Since all current is confined to the interface, h satisfies the equations, 
curl h = div h = 0; hence h is expressible in terms of a magnetic scalar potential 
which satisfies Laplace’s equation : 

(2.3) 

The steady fluid motion is governed by the following equations: 

div U = 0, div G = 0, (2.4) 

(2.5) 

(2.6) 

pU.VU = -VP’+pl curl G x  G, 
curl (U x G) = 0, 
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which, when linearized, become: 

where p o p  = pf +plGOgx is a 
fluid). 

au av -+- = 0, 
ax ay 
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(2.10) 

(2.11) 

perturbation of the total pressure (magnetic and 

Boundary conditions 

There is no disturbance at infinity, hence, 

$ - + O  as y + m .  (2.12) 

On the channel base, the assumption of an inviscid and infinitely conducting fluid 
yields 

v = g = O  2/ on y = O .  (2.13) 

At the interface, y = yo + 7, which is both a streamline and a magnetic field line, 
then approximately, 

ar-h,=g,. - (2.14) 
ax H, G, 

Finally, the pressure balance at  the interface yields, 

P1 Ha PI+- G2 = p -+p* 
2 O 2  

which, in view of (2.1), becomes 

POP = P,I+PlGosz = POHOhX+P*. 

It can readily be shown that (2.7)-(2.11) have the following solution: 

where Y is a solution of V2Y = 0. 

Expressing $ and Y as Fourier transforms: 

(2.15) 

(2.16) 
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and the boundary conditions (2.12) and (2.13) give 

T" = 2A cosh laly, $ = Ce-lalu. 

If, for convenience, we choose our pressure disturbance of the form, 

then the boundary conditions (2.14) and (2.15) , applicable on y = yo, enable US to 
solve the surface displacement : 

Examination of the integrand of (2.17) shows that there are poles on the real 
axis where coth ja)y, = P/(1-P1), and a branch point at the origin. (At first 
glance there seems to be a pole at  the origin, yet close inspection shows that this 
i s  not so.) Since coth lalyo 3 1, necessary and sufficient conditions for poles to 
exist are P+P, 3 1, (2.18) 

P1 < 1.  (2.19) 

With the above conditions satisfied, we can proceed to evaluate the integral in 
(2.17) by contour integration after using a radiation condition, following a 
method due to Lighthill (1960), which effectively removes the poles from the 
rea.1 a axis, and, in this problem, into the lower half plane. The following results 
are then obtained: 

for x < 0, 
epz  [PI( 1 - PI) cos bp - cotpy, sin bp] 

r ( x )  = sin cx + 21~ So dP 
[ C O t 2 P Y 0 + P / ( 1  -PJ21 cy,(coth2cy,- 1 )  

where (2.21) 

So, provided (2.18) and (2.19) hold, a stationary harmonic wave having wave 
number c is formed upstream of the pressure disturbance, whilst a local dis- 
turbance corresponding to the integral terms in (2.20) is formed symmetrically 
about the origin. This latter effect dies out rapidly with increasing distance from 
the origin due to the presence of the exponential factor, e-plxl appearing in each 
integrand. 

In  the light of the above results, we can examine the special or limiting case of 
condition (2.18). When P+Pl = 1 the integrand of (2.17) has poles on the real 
axis; however, coth cyo now becomes unity and consequently the surface wave has 
infinite amplitude. This situation must be avoided for linearization to be valid, 
hence necessary and sufficient criteria for an upstream wave are 

(2.22) 

(2.23) 
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3. Discussion of results 
First we shall examine the physical significance of the two criteria which are 

necessary for a harmonic wave to be formed. 
It is well known in magnetohydrodynamics that a disturbance to an incom- 

pressible and electrically conducting fluid of infinite extent can only propagate 
upstream if the upstream pull (tension) of the magnetic field exceeds the down- 
stream momentum of the fluid, or, equivalently, if the Alfv6n velocity is greater 
than the fluid velocity. Condition (2.22) says precisely this, that on the interface, 
along which the disturbance is convected, the combined tension of the vacuum 
and trapped fields must exceed the downstream momentum of the fluid. 

It is not directly obvious that condition (2.23) should hold, therefore we shall 
look at this condition more closely. Condition (2.23) says that (PI- 1) < 0, and 
the only part of the analysis in which the factor (pl- 1) arises is in the pressure 
relation a t  the interface, namely (2.15), which can be expressed in the form, 

9, Ph, P * ( 4  (P1-1)- = -+- 
Go Ho PoUi * 

This condition says that well away from the origin, where the influence of 
p*(x)  is negligible, g, and h, will have the same or opposite signs, according as 

< 1. Thus the problem is now to show that a necessary but not sufficient 
condition for waves is that g, and h, should have opposite signs well away from the 
origin. If we assume that far upstream the interface is wavy in shape, then this 
implies that a compression of the vacuum field is accompanied by an expansion of 
the trapped field and vice versa. Furthermore, a compression of the vacuum field 
corresponds to an increase in magnetic pressure of the vacuum field, i.e. h, > 0; 
whilst an expansion of the trapped field corresponds to a decrease in magnetic 
pressure, i.e. g, < 0. Hence, in order that a wave may be formed, g, and h, must 
have opposite signs, i.e. p1 < 1. 

Conditions (2.22) and (2.23) essentially provide a range of feasible velocities, 
such that, if the initial fluid velocity U, is within this range, then a wave having 
phase speed Uo is formed upstream. In particular, 

> 1 or 

where U, and U, are respectively the Alfvdn speed in the fluid and an Alfvh speed 
based on the vacuum field and the fluid density. 

Condition (3.2) is analogous to the criterion for gravity surface waves in 
hydrodynamics, U i  < gh, where g is gravity and h is the depth of the channel. 

Finally, we must discuss the existence of a steady state solution given 
by (2.20) and (2.21). This can be verified via an unsteady analysis, assuming 
that the pressure disturbance is 'switched on' at  time t = 0,  say, and writing 
p*(x, t )  = p*(z) H(t) .  Taking a Fourier transform on time with w the transform 
variable, we find tha.t 

p*(a, w )  = p*(a) r!' -+--7 2 3  
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and Lim (1968), treating a similar axisymmetric problem, used steepest descents 
to ascertain that, for large time, the solution consists of the above st)eady com- 
ponent accompanied by extra terms decaying algebraically with time. 

I am indebted to Dr G. D. Crapper for his many helpful comments and sugges- 
tions, and to the National Science Foundation, who provided a grant for this 
work. 
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